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Symbols and Abbreviations

BL butt line

CF pressure correction factor due to local angle of attack and local angle

of sideslip

' = 0 andCFA ratio of cone-probe side pressure to tip pressure ratio at ct L
t

qJ}, = 0 to cone-probe si(te pressure to tip pressure ratio at (_}_ = a L

and qJk = 0

' = 0 andCFS ratio of cone-probe side pressure to tip pressure ratio at eL
I = 0k0[ = 0 to cone-probe side pressure to tip pressure ratio at a L

and _ = _

DPSHQL local angle-of-sideslip calibration factor

DPSVQL local angle-of-attack calibration factor

FS filselage station

LE leading edge

5I_. free-stream Maeh number

/llij local Maeh number

PR measured cone-probe tip pressure divided by tunnel total pressure

PR1 measured cone-probe 1 tip pressure divided by tmmel total pressure

(see fig. A1)

PR2 measured cone-probe 2 tip pressure divided by tunnel total pressure
(see fig. A1)

PR3 measured cone-probe 3 tip pressure divided by tunnel total pressure

(see fig. A1)

PR4 measured cone-probe 4 tip pressure divided by tunnel total pressure

(see fig. A1)

PR5 measured cone-probe 5 tip pressure divided by tunnel total pressure

(see fig. A1)

PR6 measured cone-probe 6 tip pressure divided by tunnel total pressure
(see fig. A1)

PSACP average of cone-probe side pressures,

PSCP1 + PSCP2 + PSCP3 + PSCP4

4.0

PSCP1 measured cone-probe pressure at top of cone (see fig. AI)

PSCP2 measured cone-probe pressure at right side of cone (see fig. A1)

PSCP3 measured cone-probe pressure at bottom of cone (see fig. A1)

PSCP4 measured cone-probe pressure at left side of cone (see fig. A1)

PSPTCP average of four cone-probe side pressures divided by tunnel total

pressure

PTCP measured cone-probe tip pressure (see fig. A1)

PTLCP local total pressure

PTO measured tunnel total pressure
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QL

qL

Re

TPC

U, C_W

D,', W, tV l

U" 1/', W"

X,}<Z

X', Y', Z'

X', Y', Z"

&k

_L

4

(_ 6L

#

iTL

0

0

dynamic pressure used to nondimensionalize cone-probe side pressures

for coniputation of local flow angles

local dynamic pressure

Reynolds number

local static-to-total pressure ratio total pressure recovery correction
factor

velocity component along Z, Y, and X model axis, respectively (see

fig. A1)

velocity component along Z _,Y'; and X / cone-probe axis, respectively

(see fig. A1)

velocity component along Z", Y', and X" stationary rake axis,

respectively (see fig. A1)

niodel axis system (see fig. A1)

cone-probe axis system (see fig. A1)

stationary rake axis system (see fig. A1)

niodel angle of attack (ALPHA in computer-generated figures)

local angle of attack in niodel axis system

local angle of attack in niodel axis system as computed at cone

probe 1

local angle of attack in model axis system as coniputed at cone

probe 2

local angle of attack in niodel axis system as computed at cone

probe 3

local angle of attack in model axis system as computed at cone

probe 4

local angle of attack in niodel axis system as coniputed at (:()lie

probe 5

local angle of attack in model axis system as coinputed at cone'

probe 6

local angle of attack in cone-probe axis system

model angle of sideslip

local angle of yaw in model axis system

angle between X r cone-probe axis and X model axes (see fig. A1)

angle between X" cone-probe axis and resultant free-stream velocity

w_ctor (see fig. A1)

angle between Y_ cone-probe axis and velocity vector in YtZ _ plane

(see fig. A1)

local angle of sideslip in cone-prot)e axis system

orientation angle between Z r cone-probe axis and Z model axis (see

fig. A1)

rake rotation angle (see fig. 10)
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Introduction

Increased sophistication of ground-to-air and air-
to-air weaponry requires that new tactical fighter air-

craft be designed with a wider range of capabilities
than is available on current aircraft. These new de-

signs will include increased nmneuverability attd en-

hanced signature control to assure survivability. One
of the most important decisions in designing fllture

aircraft for these criteria will be the placement of the

inlets. Increased maneuverability makes it essential

that the inlets provide proper airflow to the engines

at higher angles of attack and sideslip. Howew_r, air-
flow requirements must be balanced with survivabil-

ity, since inlets are often a major contributor to high

aircraft signature.

The location of vortices ix particularly important

to inlet pla.cement because of the debilitating effect.

vortex ingestion can have on inlet operation. Experi-

nlental data usually used to determine the location of
a vortex and to track its movement have been sltrface

static pressures, which give local surface properties
of the vortices lint do little to indicate their forma-

tion and path. A time- and cost-effective method of
obtaining a broad experimental data base of actual

vortex location and extent ix to use flow-field sm'vey

techniques (reN. 1 and 2). These techniques not only

provide a large data base but can also give all indi-
cation of tile best locations for inlet placement. The

flow-field survey technique allows observance of the

vortex behavior off tile body, which makes it possi-

ble to determine directly the effectiveness of vortex
control devices.

As part. of a cooperative research program be-

tween NASA, McDonnell Douglas Corporation, and

V_'right Research and Development Center, a flow-
field investigation was conducted on a 7.52-percent-

scale wind tunnel model of an advanced lighter air-
craft design. Tile tmrpose of the investigation was

to determine the vortex trajectory and area of in-

fluence over the wing to determine tile possibility of

inlet placement ill this region. The investigation was
conducted in the Langley Hi-Foot Transonic Tun-

nel at Math numbers of 0.6, 0.9, and 1.2. Angle
of attack was varied fronl 4° to 30 ° and the model

was tested at angles of si(teslip of 0°, 5 °, and -5 °.
Over-the-wing flow-field (lata were obta.ine(t at four

fuselage stations by the use of six 5-hole conical

t)robes nlounte(t on a survey mechanism. This t)aper

presents the effects of changes in free-stream Mach

number, angle of attack, and angle of sideslip on the
over-the-wing vortex extent and tracking by use of

tile computed local total pressure recoveries. Also

presented are effects of vortex control devices on the

over-the-wing vortex. These vortex control devices

included two different apex flaps, wing leading-edge

vortex faps, and small and large wing fences. Only
local t;otal t)ressure recovery data are presented in

this report.

Apparatus and Methods

Wind Tunnel

The experiment was con(hlcled in the Langley

16-Foot Transonic Tunnel, which is a single-return

atmospheric tmmel with a slotted octagonal lest. sec-
tion and continuous air exchange. The wind tunnel

has a variable airspeed to a Maeh number of 1.30.

Test section plenum suction is required for speeds

above a Mach number of 1.1(}. A complete descrip-

tion of this facilily and its operating characteristics
is ill re%rence 3.

Model and Support System Description

The me(tel was a 7.52-t)ercent-scale simulation of

the complete wing and body of an advanced fighter

aircraft designed with a cruise capability of Mach 1.8.

Figure 1 shows tile nlodel installed in the 16-Foot

Transonic Tunnel. Tile model was sting m(mnt(,d

and the sting was mated to the 16-Fool Transonic
Tunnel model sut)port s3,stem through the knuckle-

to-sting-butt arrangement descril)e(t in reference 3.

A 15 ° pitch knuckle was use(t to achieve angles of

attack from 18° to 30 ° and a 5 ° yaw kmlckle was
used to achieve angles of sidesli t) of 5° and -5 ° .

Angle of attack of the model was measured with a.n

accelerometer re(ranted in the model forebo(ty.

Figure 2 shows a lop-view sketch of the model
which was 60.1 inches long. The wing was swept 71 °

and had a span of 38.0 itiches. In addition to the

baseline configuration shown in figures 1 an(t 2, a
lllllllber ()f vortex control devices were also teste(I.

Shown in figure 3 are sketches of the vortex flap,

the small and large wing %nces, and the large and

small apex flaps. Figure 4(a) shows the vortex flap
deflected on the model. The large and tile small apex

flaps are shown on the inodel in figures 4(b) and (c).

Both apex flal)s had the sanle centerline of rotation,

as shown in figures 3(c) an(t (d). Figure 4((t) shows
the large wing fences mounted on tile model. The

small wing fen(:es were mounted in the same position.

(See fig. 3(t)) for a sketch of the wing fences.)

A conical-probe flow survey mechanism was

nlomlted on the top of tile left wing of the nlodel.

(See figs. 1 and 4(a).) With the survey mechanism

mounted on the left wing, the right wing generated
far more lift lhan the left wing an(t a very large nega-

tive rolling nloment resulted. To text the model over



the desiredangle-of-attackrangewithout overload-
ingthesupportsystemin roll, adummyof theflow-
surveymechanismwasmountedon the right wing
(fig.4(a)),whicheffectivelyeliminatedthelargeneg-
ativerollingmoment.

As with any form of intrusivemeasurementde-
vice, the probesthat wereinsertedduring testing
createda disturbancein theflow. It wasrecognized
in doingthis test that thesurveymechanismitself
aswellastheconeprobescouldhavebeena source
of flowdisturbancethat couldhavefedforwardat
tile subsonicMachnumbers.In viewof this con-
tern, cone-probeinfluenceoll vortexflowfieldswas
assessedby usinga 3.50-percent-scalewind tunnel
modelwith ascaledsimulationof theconeprobeand
surveyhardwareusedin thecurrentinvestigation.A
nonintrusivelaser-sheetflow-visualizationtechnique
wasusedto surveythe over-the-wingflow field of
the3.50-percentmodel.The3.50-percentmodeldu-
plicatedthe forebodyandwingof the7.52-percent
model.Thecone-probesimulationhardware,shown
in figure5, couldbe movedaxially (forwardand
aft) andspanwiseto investigatecone-probeinfluence
ondifferentportionsof theover-the-wingflowfield.
Testingwasconductedin theMcDonnellDouglasRe-
searchLaboratories Shear Flow Facility (fig. 6(a)) at

a Math number of approximately 0.2. Cone-probe
effects were assessed with a flow-visualization tech-

nique that is shown in figure 6(b). A high-speed video

system and image processing allowed detailed track-
ing of the vortex-core trajectory and cross-sectional
extent.

Analysis of the flow-field visualization data
showed that cone probes did not influence the vortex

upstream of the probes at low and moderate angles of

attack. However, the presence of the probes induced

vortex burst at an angle of attack of 26 ° , which was

a lower angle of attack than that at which the vor-
tex burst for the clean wing at the santo fuselage

station. (See fig. 7.) The (:one probes did not influ-

ence the vortex trajectory or cross section upstream
of the probes at angles of attack below 24 ° . (See

fig. 8.) However, at higher angles of attack, the pres-

ence of the rake-induced vortex burst upstream of the

cone-probe tips; this would generally increase the re-
gion of total pressure loss associated with the vortex.

Changes in survey station or probe location within

the feeding sheet did not change the angle of attack
at which this vortex burst was induced. That is,

low-speed wind tunnel testing with a validated vor-

tex visualization and tracking technique showed that

cone probes are appropriate for surveying vortex flow

fields at moderate angles of attack. However, these
probes can induce premature vortex burst at high

angles of attack. The data at high angle of attack
(above 22 ° ) presented in this paper are supplemen-

tary information and should not be used for vortex
examination.

The pressure-survey probes used to acquire flow-

field data were 5-hole-pressure, 20 ° half-angle conical

probes, 0.250 inch in diameter at tile base of the cone.

Each probe measured four pressures on the sides of
the cone and one pressure at the tip of the cone.

The side pressure orifices were located 0.125 inch

aft of the cone tip at 90 ° intervals. A sketch of

an individual probe is shown in figure 9(a). Twelve

probes (six used during the test and six backups)
were individually calibrated by McDonnell Douglas

with a procedure discussed in tile section "Data
Reduction."

The six probes used during tile test were mounted

in a probe holder 3.9O inches in height and were
arranged with the tips 0.68 inch apart. The probes

were 2.00 inches long from the probe holder to the

cone tip. A sketch of the six probes mounted in the
holder is shown in figure 9(b). The probe holder

was connected to the survey mechanism that was

mounted on the top of the left wing of the model

as shown in figure 9(c). The survey mechanism was
designed by using the method outlined in reference 4,

and it translated and rotated the rake by remote
control. The use of the remote control allowed data

to be taken over a large survey area with a minimum

of model changes. The axial location and rotation

angle of the survey mechanism were measured by
potentiometers. The probe pressures were measured

with an electronic scanning pressure sensor that was

mounted in the survey mechanism.

Tests

Data were obtained at Mach numbers of 0.6, 0.9,
and 1.2. Model angle of attack varied from -4 °

to 30 ° . Data were obtained at 0 °, 5 ° , ahd --5 °

of sideslip. Reynolds number per foot varied from
3.2 x 106 at Mach 0.6 to 4.1 x 106 at Mach 1.2.

Not all configurations were tested at all angles of
attack and Mach numbers; table I gives a sumnmry

of the conditions tested for each configuration. Flow-

field data were obtained at four fuselage stations and
seven rake rotation positions above the left wing.

Figure 2 shows the four axial locations at which data

were taken and figure 10 shows a sketch of the survey
area covered at each fuselage station. The circles

represent a conical-probe position. The boundary-

layer transition was fixed on the model by 0.1-inch-

wide strips of No. 120 Carborundum grit. These

strips were located 1.5 inches aft of the forebody nose



and0.3inchaft of andparallelto the wingleading
edge.

Data Reduction

As previouslystated,eachof the conicalprobes
wascalibratedseparatelyby McDonnellDouglas.
This procedureinvolvedmountingeachprobeon a
stingandtestingit overanangle-of-attackandangle-
of-sidesliprangefrom-36° to 36° overaMachnum-
ber rangesuchthat the probescouldbe usedto
measurelocalMachnumbersup to 3.5. Theangle
calibrationdatawereextrapolatedto valuesof flow
anglesfrom90° to -90°. Tileprobecalibrationwas
doneby usingthe methoddescribedin reference4.
Thecalibrationdata for eachprobewereinput into
the datareductionsystemin theformof six tables.
Thesetables,alongwith thefivemeasuredpressures
fromeachprobe,wereusedto computethelocalflow
propertiesof pressurerecovery,Machnumber,angle
of attack,and angleof sideslipat eachprobe. Al-
thoughall dataquantitieswerecomputed,onlythe
total pressurerecoveryis presentedin this paper.
A detaileddescriptionof tile conical-probedata re-
ductionprocedureandrelatedequationsispresented
in the appendixA. Thedatareductionschemewas
an iteratingone,with a finite numberof iterations
usedto determineconvergence.If no convergence
wasfound,thedataforthat particularprobeat that
particularpointwerenot used.

Inaccuraciesexist,in the5-holeconeprobes,par-
ticularlyat thehigherflowanglesasnotedin refer-
ence5. Thecalibrationmethodexplainedin refer-
ence4whichwasusedfor theprobesin thecurrent
investigationattemptedto correctasnmchaspossi-
bleforanyknowninaccuracies.Althoughtheprobes
themselvesareinherentlyinaccurate,theycanstill be
used astheywerein thecurrentinvestigationfor
determiifingthecross-sectionalextentandtrajectory
of a vortex.

Presentation of Results

Resultsare presentedunder two main head-
ings: "BaselineConfiguration"and "VortexCon-

trol." Even though the model was tested at angles
of attack from -4 ° to 30 ° , data are only presented

for (_ > 8° because the wing leading-edge vortex (lid

not appear in the survey area below a = 8°.

The data are presented as total pressure recovery

(total pressure obtained from the probe divided by

the free-stream total pressure) contours at each fuse-

lage station. Tile contours are presented for various
Mach numbers and angles of attack. The contouring

program used for plotting interpolated but did not

extrapolate the data; therefore, some contours ap-

pear incomplete because of the lack of data at some

conditions. Any contour that did not use all the data
at each of the survey points shown in figure 10 has

the locations of the data that were used displayed as

plus signs. All contour curves were drawn by using a

spline curve fit.. Some of the pressure recovery data

presented were computed at local angles of attack

outside the range of tile calibrated flow angles. Ap-
pendix B gives the pressure recovery and local angle

of attack for the data presented in the figures that

had a local angle of attack greater than 40 ° or less
than -40 °. The data are presented as tables for each

configuration. For each data point, that contained at
least one local angle of attack outside the range from

40 ° to -40°. the local angle of attack and total pres-

sure recoveries are listed for each probe. The data arc
identified by free-stream Mach number, model angle

of attack, rake rotation angle, and survey station.

The probes are numbered 1 through 6 as shown in

figure 10(a). In addition the figure number is listed

on each point where the data are plotted. Figures 11
through 14 present the data for the baseline con-

figuration at. an angle of sideslip of 0°. Figures 15

through 18 present the data for the baseline config-
uration at an angle of sideslip of 5 ° and figures 19

through 22 at an angle of sideslip of -5 ° .

The vortex control devices were tested only at

Mach 0.9; therefore, the data are presented as a

function of survey station and angle of attack for each

control device. Figure 23 presents the data for the
vortex flap; figures 24 and 25 present the data for the

large and small wing fences; figure 26 presents the

data for the vortex flap with the large wing fence;

figures 27 and 28 present the large and small apex
flap data.

Baseline Configuration

Mach number. The effect of increasing Mach
number on the over-the-wing flow field was essentially

the same for all angles of attack of 8° and greater.

The main effect of increasing the Mach number was

on the strength and movement of the primary wing

vortex. Comparing figures 13(a), (b), and (c) reveals
that as Mach number increased, the vortex core

moved more inboard on the wing. The portion of

the survey area influenced by the vortex increased
as Mach number increased. Figures 11 through 14

show this effect occurred regardless of survey station

or angle of attack. The behavior of the over-the-wing
flow field was basically the same at all Mach imn|bers.

Therefore, the rest of the discussion is primarily for

Mach 0.9, which was considered the represent.atiw'

Math number for the transonic range.
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Axial survey station. Figures 11 through 14

show the over-the-wing flow field at the four axial
survey positions. As the flow field was surveyed at

increasing fuselage stations down the body, tile pri-

mary wing vortex moved more outboard on the wing

and elongated upward into the survey area. The fore-
body vortex also changed at tile different axial loca-

tions. At an angle of attack of 12 °, the highest an-

gle where the forebody vortex was still independent

of the primary wing vortex, the forebody vortex was
drawn more outboard on the wing as it moved aft and

was eventually drawn into the primary wing vortex.
This behavior was due to the increased influence of

the primary wing vortex on the forebody vortex. Be-
cause the behavior of the over-the-wing flow field was

generally the same for varying angles of attack and

Mach numbers at, all survey stations, the rest of the

discussion is mostly for the surveys done at fllselage
station 36.5. (See fig. 2.)

Angle of attack. The largest effect on the tran-

sonic over-the-wing flow field was due to increasing

the angle of attack. Figure 13(b) shows the total
pressure recovery contours for angles of attack from

8 ° to 30 °. A wing leading-edge vortex could be seen
in the survey area at an angle of attack of 8° . At

an angle of attack of 12 ° , the extent of the primary

wing vortex had grown to cover the bottom outboard

half of the survey area and a forebody vortex was in
the survey area and ,,'as being pulled outboard by

the wing leading-edge vortex. By an angle of attack

of 14° , the wing vortex covered more than half the
survey area, and the independent forebody vortex

disappeared as the angle of attack increased. At an-

gles of attack of 18 ° and 22 °, the wing vortex had

grown to influence the entire survey region.

On highly swept wings, the adverse pressure gra,

dients associated with the prinmry wing leading-edge

vortex can spawn a secondary wing vortex (ref. 6).
At an angle of attack of 14 ° , an area of low total

pressure recovery had appeared outboard of the pri-

mary wing vortex core (fig. 13(b)). The appearance
of closed contours between the primary wing leading-

edge vortex and the outboard bottom part of the

survey area is thought to be from a secondary wing

vortex. Although this area could not be fully mapped
because of limitations in the flow-survey apparatus,

the data from reference 6, in addition to flow visual-

ization pictures from reference 7, make a strong case

for the existence of a secondary wing vortex in this
area.

Angle of sideslip. The effect of positive and

negative sideslip on the over-the-wing flow field was

determined by testing the model at angles of sideslip

of both 5 ° and -5 ° . Angle of sideslip had only a
small influence on the over-the-wing w_rtex system.

Movement of the wing vortex system and the portion

of the survey area affected was influenced by leeward

and windward flow. In leeward flow, the primary

wing vortex inoved slightly outboard in the survey
area. The forebody vortex that was well established

at angles of attack of 8 ° and sideslip of 5° had

disappeared a_s an independent vortex at an angle of

attack of 12 ° (fig. 17(b)), having likely merged with
the primary wing vortex. At angles of sideslip of

-5 ° and angle of attack of 12 °, the forebody vortex

was seen only in the inboard corner of the survey

area and was no longer visible at angle of attack of
14° (fig. 21(b)). At. negative sideslip, the forebody

vortex did not merge with the primary wing vortex

but instead was swept along the fuselage out of the

survey area.

At an angle of sideslip of 5 ° (fig. 17(b)), the pri-
mary wing vortex had encompassed a larger portion

of the survey area than at an angle of sideslip of 0°

(fig. 13(b)). This expansion would be expected since

yawing the model effectively changed the the wing
leading-edge sweep. That is, at positive sideslip the

surveyed wing had an effective sweep angle of 76 ° ,

and at negative sideslip the wing had an effective
leading-edge sweep of 66 °. As would be expected,

the vortex on the wing at negative sideslip stayed

more inboard on the wing than either the vortex on

the wing at positive sideslip or the wing at an angle
of sideslip of 0°. (Compare figs. 21(b), 17(b), and

13(b).)

At. Mach 0.9 for the positive sideslip flow field

(fig. 17(1))), indications of a secondary wing vortex

had already appeared as an outboard low pressure

area separate from the core of the primary wing vor-
tex at an angle of attack of 12 ° . Because of the in-

creased effective leading-edge sweep of the wing, the

secondary vortex formed at the lower angle oJ attack

(ref. 6). On the windward wing, there was no evi-
dence of a secondary vortex forlning at any angle of

attack at either Math 0.9 (fig. 21(b)) or Mnch 1.2
(fig. 21(c)). Reference 7 gives flow-visualization data

for a 65 ° delta wing. At Mach 0.85 the data show

visual evidence of a secondary wing vortex that first

appeared at an angle of attack of approximately 12°
at approximately 80-percent wing chord section. In

the present study the effective sweep of the wing at
negative sideslip was nearly the same as the wing

in reference 7. However, for the present study, the

most aft survey station was at approximat,'_ly the
50-percent wing chord and the secondary vortex

might have been seen in a survey area farthel aft on



thewingat negativesideslipif tileexistinghardware
couldhavesurveyedthere.

Tiledataat allangleofattackof8° ill figure21(t))
exhibitedanunusualcontourpatternunlikeally'of
tile othercontours.Thisunconmlonpatternmight
havebeenananomalyof the contourplottingpro-
grant. Tile authorscannot(tetermineall3,"other ex-

planation for these unusual t)atterns.

Vortex Control

A part, of this investigation of over-the-wing flow
felds was to determine the effectiveness of various
vortex control devices. The devi(:es evaluated were

a vortex flap and two (lifferent wing fences and apex

flaps. (See fig. 4.) All these (tevices were designed to

influence the over-the-wing flow field by uncoupling

tile forct)ody vortex and tile prilnary wing leading-

e(tge vortex, thereby reducing the overall strength
of the vortex systeIn. The secon(l t)urpose of these
devices was to influence the movement of the vor-

tex core to provide advantages in aer(/dynanfic inte-
gration. The effect.ivcness of the vortex control de-

vices was determined by (:omparing the over-the-wing
flow field measured when they were installed with

tile baseline flow field. Because of time constraints,
data with the vortex control devices installe(t were ac-

(tuired only at Math 0.9, which was considered to be
representative of the transonic Mach numt)ers. The

flap deflections were scheduled appropriately for the

test angles (if atta('k. (See fig. 3 for deflection angles.)

Also. the wing fences by ttmmselves were tested only
at angles of attack of 18 ° and greater.

Vortex flap. Figure 23(c) shows the total tires-

sure recovery contours at fuscqage station 36.5 for tile
configuration with vortex flap deflected 30 ° . At an

angle of attack of 8 °, no indication of the prinmry

wing vortex was seen in tile survey area. In cont-

parison, tile vortex was seen ill the survey area for
the t)_Lseline configuration at an angle of attack of 8 °.

(See fig. 13(b).) The only (tisturbmmes ill the survey

area at an angle of attack of 8° were a small region of
pressure loss evident near the nfiddle bottom of the

survey area, which was possibly due to separation

fronl tile flap hinge line, and a slight indication of

a possible forebody vortex far int)oard in the survey

area. At all angle of attack of 12 °, the primary wing
vortex had appeared ill the survey area. but affected a

smaller portion of tile survey area than for tim base-
line configuration. The disturl)ance in the left-hand

portion of the survey area was probably still caused

tIy tile possible separation from the flap hinge line.
Because of the much smaller primary wing vortex,

the forebody vortex was not drawn into the survey

area at an angle of attack of 12 °, unlike the base-

line configuratkm. At an angle of attack of 15 ° , the

forebody vortex was inboard in the survey area ill-

dependent from the wing leading-edge vortex, which

was still only in the outboard portion of the survey
area. The vortex flap prevented the wing vortex fi'om

being large enough to be seen ill the survey area m>

til a higher too(tel angle of attack. The vortex was

kept small by using flail deflection angles sche(hfled

with model angle of attack to kee t) the effective an-
gle of attack of tile wing leading edge lower, which is

consistent with the expected perfornmnce of the vor-

tex flap. The t)aseline configuration showed that the

foret)o(ty vortex merged with tile prinmry wing vor-
tex at all angle of attack of 14 °. Because of too(tel

har(lware constraints, only set angles of the vortex

flap could be tested. By properly sche(hfling the vor-
tex flap deflection at each angle of attack, t)rol)al/ly

even more control of the over-the-wing vortex system
couht be achieve(t.

Wing fences. Small and large wing braces were

tested at angles of attack of 18 ° att(t 26 ° . (See

figs. 24 and 25.) Neither of the wing fences had any

apprecial)le effect on the movement of tile prinmry

wing vortex. Also, no evidence was seen of any
foret)ody and wing vortex uncoupling. Essentially

the only effects otiserved in the survey area were

a section of lower tlressure recovery on the bottom

inboard edge, which may have been due to set)aration
from tile wing fence, and a slight decrease in the

survey area affected by tile wing leading-edge vortex

as comt)ared to the baseline con figuration (fig. 13 (b)).

The two effects were ot)served for both the large and
small fences.

Tile large wing fence was tested in conjunction
with the vortex flap at angles of attack of 8 ° , 12 ° ,

and 14 ° (fig. 26). Because of an instrumentation
malfimction, only three points were obtained in the

outboard half of the survey area. These data were

not enough to draw any ineaningful contours in this

area. From the data obtained ill the inboard portion

of the survey area, it appeared that the wing fence

tended to negate at least in part tim uncoupling (if
the wing vortex and the foretlody vortex that had

been accomplished by the vortex flap alone.

Apex flaps. Two apex flap designs were tested.

The large apex flap had a 71 ° sweep angle aim
was tested at angles of attack from -4 ° to 30 ° .

As with the vortex flap, tile apex flap deflections

were scheduled with angle of attack. Because of
the instrumentation malfunction mentioned in the

previous section, tile contours in the outboard half

5



of thesurveyareacouldnot beplotted.Comparing
theinboardcontoursin figure27(c) with the baseline

data in figure 13(b), the large apex flap was successful

in uncoupling the forebody vortex from the wing
vortex at fuselage station 36.5. At angles of attack of

12 ° and 14°, an independent forebody vortex appears

to exist, but it is difficult to draw conclusions without

tile outboard survey area data.

The small apex flap had a 45 ° sweep angle and

was tested only at the higher angles of attack from
18 ° to 30 ° . Because of the instrumentation malfunc-

tion, too little data were taken to draw any meaning-
fill conclusions.

Inlet Placement

All the vortex control devices showed some suc-

cess in decreasing the extent of the primary wing

vortex in the survey area, with the vortex flap be-

ing most effective. However, the over-the-wing flow
field even with tile vortex control devices was still

not conducive to the placement of inlets above the

wing because of the extent and thc trajectory of tile
vortex. Even with tile vortex flap, which was quite

effective, the inlet could not be placed so as to avoid

vortex ingestion.

The cross-sectional extent and trajectory of the

wing leading-edge vortex as mapped by the cone-

probe survey data was very consistent with other
published data for the flow across a delta wing. Thus,

this method of flow-field mapping for vortex extent

and trajectory was found to be efficient and useful.

Conclusions

A flow-field investigation of a wind tunnel model

of an advanced fighter aircraft design has giwm the
following conclusions:

. The major contributor to the reduction in the

total pressure recovery of tile over-thc-wing flow

field was the primary wing leading-edge vortex.

. Tile model forebody generated a separate vortex

that coupled with the primary wing vortex at an-

gles of attack above 12° for the baseline configu-
ration at 0 ° sideslip.

. The effect of windward and leeward flow on the

over-the-wing flow field was the same as would

be expected by increasing and decreasing wing
leading-edge sweep angle.

4, The vortex flap uncoupled the forebody vortex
from the primary wing leading-edge vortex at

angles of attack of tip to 18° .

. Even with the use of tile vortex control devices,

the over-the-wing flow field was still not conducive

to inlet integration.

NASA Langley Research Center
Hampton, VA 23665-5225
March 10, 1992



Appendix A

Data Reduction Procedure and Equations for Conical Probes
Thedatareductionschemeusedthe localMachnumberasthe independentquantitywith all

otherflow"propertiesasa functionof localMachnumber.Thecomputationof the localflow-field
propertieswasaccomplishedwith aniterationschemebasedontheconvergenceof anaverageratio
ofcone-probesidepressureto total pressure.Themethodandequationsof the iterationschemeare
detailedin the followingexplanation.Notethat theequationsasgivenarefor a singleprobeand
arerepeatedforeachprobe.All interpolationandextrapolationwaslinear.

Anaverageofthefourcone-probesidepressureswascomputed,andthisaveragewasthendivided
bytunneltotal pressureto give

PSACP
PSPTCP- PTO

ThequantityPSPTCPwasthe initial assumptionfor the iteration.With this quantityalongwith
therakeorientationangleO, a valueof localMachnumberwasobtainedfroma calibrationtable.
If the localMachnumberwasgreaterthan1.0,localpressurerecoverywascomputedasfollows:

PTCP PTLCP
PIt-

PTO PTCP

If the localMachnumberwaslessthanor equalto 1.0,localpressurerecoverywas

PTCP
PR-

PTO

With theuseof thelocalpressurerecoveryandlocalMachnumber,avalueof dynamicpressurewas
computedasfollows:

qL PR PTO
QL -- PTLCP

where

qL --0.7/1:/2/, (1 + 0.21_I2) -a'5PTLCP

With this dynamic pressure and the cone-probe side pressures, the following quantities were

computed:
PSCP3 - PSCP1

DPSVQL =
C2L

PSCP2 - PSCP4
DPSHQL =

QL

Cone-probe side pressures measured at orifices 1, 2, 3, and 4 are shown in figure A1. By using

these quantities and local Mach number, a value for local angle of attack and a value for local angle
of sideslip were obtained from the calibration tables. If the local angle of attack or local sideslip

exceeded ±90 °, they were set equal to :k90 °. With the use of the values of local alpha, local angle

of sideslip, and local Mach number, pressure correction ratios were obtained from the calibration
tables. These values were then used to compute the correction factor as follows:

CF = CFA + CFS - 1

By using this quantity, pressure recovery, and PSACP/PTO, a new value of PSPTCP was computed
as follows:

1 1
PSPTCP = PSPTCP--

CF PR

This new value of PSPTCP was compared with the old vahm of PSPTCP. If the absolute value of
the difference was less than 0.0005, the solution was considered converged. If the difference was
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to probe axis

Figure A1. Cone-probe pressures and axis system.

greater than 0.0005, the new value of PSPTCP was taken and the procedure started again. If after
25 iterations tile solution had not converged, the vahm of local Mach number at tire 24th iteration

was compared with the value at the 25th iteration. If the Maeh numbers were within 0.005. the

solution was declared converged. If the Math numbers were not within 0.005, then a new value of

PSPTCP was conqnlted by averaging PSPTCP from the 24th and the 25th iterations. The iteration
was begun again with this scheme for computing the new PSPTCP. If after another 25 iteralions

the solution was still not converged, the data for that particular probe at that particular point were
not used.

The local flow properties calculated as just presented were in the cone-probe axis system. For
/ and Iconvenience of use and analysis, a L _L were transferred to the model coordinate system iI, the

following maimer. First, the local velocities relative to the probe axis system were calculated as

[ M2(sina_)2[1- (sin- _)2]
W'=

[ M_(sin q_)2[1- (sin- a}) 2]
V'=

1 --- (s_2_in -- _)_

! /2 --
U' = cosc_cv/M r (V') 2



These equations for velocity vectors did not take into account the sign of the velocity and t.hc

following convention was necessary:

w'= w' (,_9.>_0)

it," = -i,,_" (,,}_< 0)

t:'= v' (%__>0)

Before the final transformation to the model axis system, the velocity vectors wore obtained along

the vertical (Z_), horizontal (Y'_), and axial (X") axes of the stationary rake. This transformation

was aeeomplished by a pure rotation ((-_)) about the X t = X I_ axis a.s follows (fig. A1):

I.''st 0 cox (9 - sin (-) I ''_

lvI "sl 0 sin O cos (-) II "I

To obtain the velocity components in t|le niodel axis system, a transfl)rmation was a.ceomtflished l)y

a pure rotation (b) about the Y_ = y_r axis as follows (fig. Al):

{ 0 )V = 0 1 (1 I ''xr

1I _ sin/_ 0 cosh II 'xr

The value of _$ was dependent on where ttie survey niechanism w_s niounted Oil the model (i.e., over

the wing, under "t.lie wing, llear the body, or far frolll lhe body). Note that for lhe investigation

presented in this pal)er, only the over-the-wing near-the-l)ody survev nl(,chanisni t)osition was used.

Using these velocity vectors, (t:[, alia _7L v¢(?rc coniputed in tim model eoordinai.e svsl.elll t)y i|le

following equations:

(t L = sin

.z7L =sin I _iI _2

Because of inaccuracies in the cone-prot)e measurenlent of true total pressure at angle of attack or

angle of sideslip, a scheme was devised to correct each cone-probe total pressure measurement. With

the local Mach number and the velocity vectors I,V / and V l, two angles (c and )') were computed as

follows:

C = 90 -- cos-1 g Jill

The angle "),, was defined with respect to the sign of the differences in cone-probe side pressure

(DPSHQL and DPSVQL):

9



_f = tan- 1 V¢

tan- 1 _rl7 =90+ _7

(DPSHQL ___0; DPSVQL _< O)

(DPSHQL > O; DPSVQL > O)

V !

"y= 180+ tan -1 (DPSHQL _< 0; DPSVQL _> O)

lcVl

7 = 270 + tan 1 _- (DPSHQL _< 0; DPSVQL < 0)

With these angles and local Mach number, a local pressure recovery correction (TPC) was obtained
from the calibration tables and applied to determine the corrected value of pressure recovery PRCOR,
as follows:

PI1COR = PR + TPC

New values of local total pressure, local static pressure, and local dynamic pressure were then

computed with PRCOR and the equations previously defined.

10



Appendix B

Total Pressure Recoveries at (_L < -40° or _)L > 40°

This appendix presents the total pressure recovery and local angle of attack for all the probes

at any point where at lc'_st one probe had a calculated local angle of attack greater than 40 ° or

less than -40 ° . Blank spots in the table indicate where data were not computed and therefore

not plotted. Tables B1, B2, and B3 are for the baseline configuration at 3 = 0 °, -5 °, and 5°,

respectively. Table B4 is for tile configuration with the vortex flap deflected; table BS, with wing
fenees; table B6, with large wing fences and w)rtex flap deflected; and t.able B7, with apex flaps
deflected.
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Ta|)lt! B1. Baseline Configuration at 3 = 0 °

M_ (leg deg FS deg PR1

0.6 12 61 32.8 5 0.999

(/.6 12 30 32.8 5 1.(/(/(/

(/.6 12 6(I 32.8 9 0.984

0.6 12 85 32.8 9 (I.979

0.6 14 75 32.8 3 (/.998

0.6 14 61 32.8 3 0,999

0.6 li 30 ;32,9 5 (I.998

0.6 14 30 32.8 12 (I.98(I

0.6 14 85 32.8 13 (I.963

0.6 18 75 32.8 1 1.000

0.6 18 61 32.8 2 (I.999

0.6 18 30 32.8 2 0.989

0.6 18 31 32.8 24 0.931

(/.6 18 60 32.8 23 0.923

0.6 18 85 32.8 19 0.920

0.6 22 75 32.8 7 0.995

0.6 22 60 32.8 9 0.98,1

0.6 22 30 32.8 1 0.951

0.6 22 30 32.8 42 0.833

(/.6 22 60 32.8 38 0.850

0.6 22 85 32.8 31 0.858

0.9 12 61 32.8 10 (/.984

0.9 12 85 32.8 10 0.979

0.9 14 75 32.8 2 0.998

0.9 14 61 32.8 3 0,999

0.9 14 30 32.8 6 I).997

0.9 14 30 32.8 1,1 0.978

0.9 14 60 32.8 15 0.967

(1.9 14 85 32.8 15 0.959

(leg PR2 deg PR3 (teg PR,I deg PR5 deg PR6 text

4 0.999 4 0.998 3 0.999 17 0,970 89 0.830 11(a)

2 0.999 1 0.997 3 0.990 19 0.933 73 0.809 11 (a)

2 0,975 0 0.949 5 0.917 19 0,783 74 0.634 ll(a)

1 0.966 3 0.928 21 0,876 40 (I.761 t1(a)

0 0.998 4 0,998 15 0.988 45 0.873 ll(a)

1 0.998 5 0.994 16 0.971 ,'13 (/.836 11 (a)

0 0.995 4 0.980 10 0.938 28 (I.823 ,16 0.661 l l (a)

4 0.966 7 0.923 11 0.843 5 0.768 43 0.555 11 (a)

3 0.940 5 0.891 34 0.862 50 0,757 11 (a)

7 1.000 19 0.984 42 0.924 75 0.740 ll(a)

9 (/.995 22 0.965 51 0.873 80 0.702 ll(a)

8 0.973 28 0.892 25 0.859 48 0.708 52 ().583 l l(a)

13 0.882 54 0.801 34 0,774 30 0.693 1 l(a)

12 0.891 44 0.854 43 0.8,16 60 0.653 1 l(a)

7 0.886 t5 0.844 40 0.782 65 0.712 11 (a)

17 (I.987 39 0.927 60 0.814 1 l(a)

22 0.963 56 0.862 79 (/.742 1 l(a)

21 0.900 23 0,823 28 0.791 59 0.586 ll(a)

28 0.792 72 0.8M 42 0.684 4,1 0.546 ll(a)

26 0,805 67 0.808 56 0.743 86 0.595 l 1 (a)

10 0.820 26 0.837 54 (/.659 84 0.639 1 l(a)

3 0,975 0 0.952 1 0.937 17 0,707 58 0.539 1 l(b)

2 0.964 7 0.926 6 0.872 38 0.7,19 76 0.513 11 (b)

2 0.997 9 0.99,1 28 0.953 58 0.744 1 l(b)

2 0.997 9 0.98,1 32 0.819 50 0.615 1 l(b)

1 0.990 3 0.9(i3 1 0.795 23 0.556 ,13 (I.50,1 11 (b)

7 0.963 13 0.919 13 0.858 13 0.668 51 0,494 1 l(b)

6 0.951 9 0.917 11 0.853 41 0,653 70 9.5,18 1 l(b)

4 0.936 5 0,890 19 0.707 55 0.595 83 0.581 1 l(b)
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Table B1. Continued

. ' 5 e_, Figure ill

M x deg (leg FS deg PR1 (leg PI{2 deg PR3 deg PR4 deg PR5 deg PR6 text

0.9 18 75 32.8 4 1.000 13 0.995 31 0.946 51 0.805 77 0.598 44 1.(100 11 (b)

0.9 18 59 32.8 2 0.993 13 0.979 40 0.835 37 (I.634 40 0.7,16 11(t))

0.9 18 30 32.8 7 0.982 3 0.962 6 (I,644 7 0.645 40 0.445 18 0.663 11 (b)

0.`() 18 30 32.8 28 I).929 19 0.925 39 0.791 24 0.775 44 0.466 48 0.691 1 l(b)

0.9 18 60 32.8 27 0.918 15 0.908 34 0.836 26 0.819 52 0.577 58 0.731 lt(b)

0,9 18 85 32.8 26 0.908 8 0.885 6 0.820 32 0.772 7(1 0.349 11 (b)

0,9 22 75 32.8 12 0.985 26 0.960 ,I5 0.827 69 0.650 11 (b)

0.9 22 60 :32.8 17 0.954 2!) 0.856 42 0.594 54 0.698 41 0.702 11 (b)

(/.9 22 31 32.8 36 0.863 2,1 0.947 ,13 0.661 26 0.798 28 (1.707 50 0.603 11 (b)

1.2 12 75 :{2.8 5 0.952 5 0.878 1 0.871 5 0.918 25 0.860 ,17 0.821 ll(c)

1.2 12 6l 32.8 5 0.990 3 0.972 3 0.925 3 0.922 27 (I.787 ,i3 0.822 ll(c)

1,2 12 85 :{2.8 11 0.977 2 I).!188 3 0.918 6 0.821 58 0,419 75 0.315 ll(c)

1.2 14 60 32.8 4 0.,(}82 0 0.945 3 0.906 12 0.883 36 0.441 46 0.618 ll(c)

1.2 14 30 32.8 15 0.987 8 1.000 10 0.886 6 0.846 5 0.451 41 0.343 ll(c)

1.2 14 60 32.8 15 0.981 6 1.000 7 0.897 7 0.853 34 0.427 4(1 (}.703 11 (c)

1.2 14 84 32.8 15 0.975 4 0.977 2 0.873 26 0.638 59 0.389 65 0.,138 11 (c)

1.2 18 75 32.8 3 (I.926 11 0.919 29 0.827 41 0.735 56 0.598 ll(c)

1.2 18 6(I 32.8 2 0.919 13 0.906 37 0.574 37 0.379 42 0.348 1 l(c)

1.2 18 30 32.8 9 0.926 2 0.909 6 0A76 0 0.43,1 49 0.206 22 0.276 11 (c)

1.2 22 75 32.8 14 0.900 22 0.901 37 0.681 51 0.563 ll(c)

1.2 22 60 32.8 11 0.842 31 (/.596 31 0.293 4,t 0.494 11 (c)

1.2 22 30 :{2.8 17 (I.887 6 0.507 4 0.362 12 0.512 52 0.170 9 0.426 ll(c)

1.2 22 30 32.8 29 (I.968 20 1.0110 38 0.562 16 0.657 16 0.643 46 0.387 ll(c)

1.2 22 85 32.8 26 0.91,1 8 0.977 7 0.618 22 0.59,1 28 0.720 78 0.146 ll(c)

0.6 12 31 35.(I 4 1.000 1 1.000 1 0.999 5 0.998 16 0.978 ,i9 0.935 12(a)

0.6 12 60 35.0 7 0.986 2 0.961 14 0.906 2 0.875 13 0.694 51 0.740 12(a)

0.6 12 84 35.0 8 0.968 0 0.963 31 0.879 47 0.772 61 0.639 88 0.701 12(a)

0.6 14 75 35.0 3 1.000 () 1.000 3 1.000 9 0.999 27 0.959 86 0.812 12(a)

0.6 14 60 35.0 3 1.000 1 1.000 4 1.0(10 10 0.996 30 0.943 84 0.816 12(a)

0.6 14 31 35.0 3 1.000 3 0.998 8 0.991 16 0.975 :35 0.889 84 0.791 12(a)
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Table 131. Continued

_,, 0, c_, c_, c_, _, cQ, c_, Figure in

),{_c (leg deg FS deg PR1 (leg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text

0.6 14 85 35.0 13 0.945 2 0.942 26 0.869 52 0.753 71 0.611 12(a)

0.6 18 75 35.0 2 1.000 7 1.000 16 0.992 28 0.965 51 0.837 12(a)

(1.6 18 6(1 35.0 3 0.999 9 0.998 19 0.981 35 0.944 47 0.811 12(a)

0.6 18 30 35.0 2 0.991 12 0.980 34 0.924 39 0.875 69 0.727 52 0.663 12(a)

0.6 18 60 35.0 27 0.891 1:1 0.835 60 0.860 63 0.692 64 0.586 12(a)

0.6 18 86 35.0 21 (I.899 9 0.915 35 0.810 57 0.745 67 0.660 12(a)

0.6 22 75 35.O 7 (I.997 15 0.992 31 0.959 44 0.889 71 0.737 12(a)

0.6 22 60 35.0 10 (I.988 2(/ (}.977 42 0.927 49 0.850 76 0.712 12(a)

0.6 22 30 35.0 11 0.952 30 0.891 47 0.802 44 0.762 83 0.602 51 0,562 12(a)

0.6 22 30 35.0 48 0.759 31 0.807 58 0.697 ,'15 0.639 31 0.526 12(a)

0.6 22 60 35.0 43 0.816 36 0.805 76 0.774 71 0.575 12(a)

0.6 22 84 35.0 33 0.840 8 0.915 30 0.718 76 0.658 66 0.676 12(a)

(}.9 12 60 35.0 4 0.999 2 1.000 0 1.000 6 1.000 21 0.965 83 0.846 12(b)

0.9 12 31 35.0 4 0.999 0 1.000 3 0.999 8 0.992 29 0.903 62 (}.800 12(b)

0.9 12 60 35.0 9 0.977 2 0.964 15 0.926 2 0,842 29 0.545 69 0,520 12(b)

0.9 12 86 35.0 10 0.965 6 0,950 14 0.782 35 0.796 57 0.581 12(b)

0.9 14 75 35.0 2 0.998 2 0,999 7 0,998 19 0.983 41 0,854 12(b)

0.9 14 60 ;35.0 2 1.000 3 1.000 9 0.995 22 0.963 44 0.777 12(b)

0.9 14 30 35.0 4 0.997 3 0.996 10 0.977 24 0.894 32 0.684 42 0.652 12(b)

0.9 14 31 35.0 12 0.972 1 0.950 1 0.871 6 0.692 10 0.538 47 0.493 12(t))

0.9 14 60 35.0 14 0.957 2 0.938 1 0.910 29 0.750 ,'15 0,500 12(b)

0.9 l,i 85 35.0 16 0.939 7 0.924 19 0.725 50 0,611 57 0.662 12(b)

0.9 18 75 35.0 5 1,000 12 0.997 27 0.966 39 0.886 65 0.693 12(b)

0.9 18 60 35.0 5 0.996 14 0.987 36 0.922 51 0.763 12(b)

0.9 18 30 35.0 1 0.973 14 0.946 24 (I.707 14 0.662 46 0.488 42 0.492 12'b)

0.9 18 30 35.0 29 0.900 13 0.953 31 0.715 28 0.535 43 0.486 48 0.644 12[b)

0.9 18 60 35.0 27 0.905 10 (/.904 25 0.832 53 0.662 57 0.598 55 0.733 12b)

0.9 18 85 35.0 23 0.886 (} 0.892 23 0.690 50 0.,10'1 51 0,577 50 0.790 12 b)

0.9 22 75 35.0 12 0.991 20 0.970 39 0.895 52 0,772 77 0.575 50 0.809 12t))

0.9 22 60 35.0 16 0.967 31 0.880 51 0.712 49 0.706 12b)
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Table I31. Continued

,, 0, ,4, ,q, ,d, q., 'd..
eg deg FS deg PR1 deg PR2 deg PR3 deg PBI deg PR5 ,leg PR6

2 31 35.0 31 0.899 16 0.803 34 (}.696 38 0.577 36 0.(i67 55 0.531

2 60 35.0 36 0.825 l 1 0.723 30 0.77(} ;39 0.741 52 0.52,1 54 0.836

2 85 35.0 25 0,8,11 4 0.860 22 0.78:{ 10 0.37t ,t5 (},378

2 60 35.(} 8 0.989 0 0.988 1 0.897 5 0.617 24 0.325 :18 0.666

2 84 35.0 8 0.985 6 0.993 5 0.8,11 37 0.555 55 (}.,158 6d 0.511

4 75 :}5.0 1 0.945 1 0.932 5 0.919 11 0.918 32 0.782 50 0.550

,1 60 35.0 3 0.946 2 (}.943 6 0.917 1,1 0.905 31 0.826 ,11 (}.795

4 5!) 35.0 13 (}.977 3 1.000 8 0.840 29 0.538 50 0.368 59 0A97

4 85 35.0 11 0.976 6 0.989 1 0.7,13 4(} 0.339 56 0A37 50 0A72

8 75 35.0 3 0.926 10 0.918 23 0.876 33 0.875 :16 0.526

8 60 35.(} 4 0.924 12 (}.92,1 31 0.783 41 0.618 6,1 0.125 51 0.509

8 30 35.0 6 0.915 5 0.904 7 0.1,12 5 0.-139 45 0.270 3i 0.316

8 30 35.0 21 1.000 9 0.948 6 0.541 6 0.522 15 0.389 4,1 0.354

8 6(} 35.0 19 0.986 5 0.965 14 0.569 33 0.630 '19 0.722 55 0.617

8 85 35.0 17 0.975 1 0.916 20 0.622 2!) {).517 61 0.222 64 {7.155

2 75 35.0 13 0.917 21 0.905 34 0.761 39 (}.779 79 (}.359 56 0.530

2 60 35.0 16 0.855 28 (}.8,18 ,10 0.473 46 0.65,1 79 (}.317

2 30 35.0 7 0.875 1 0A84 0 (}.29l 16 0.298 57 0.229 36 (}.218
i

2 30 35.0 27 0.858 14 0.956 20 0.534 20 (}.718 18 0.717 5,1 (}.,180

2 60 35.0 2,'1 0.940 8 0.960 21 0.614 29 0A95 48 0.560 71 0.133

2 86 35.0 21 0.921 | 0.773 22 0.618 33 0A72 49 0.172 65 0.200

2 60 36.5 6 0.973 (} 0.918 12 0.860 6 0.733 17 0.7.17 42 0.832

2 86 36.5 3 0.951 12 0.962 43 0.868 6,1 0.693 62 0.651 66 0.803

Figure in

text

12(},)
12(I,)

t2(t,)

12(c)

12(c)

12(c)

12(,.)
12(c)

12(c)

12(_.)
12(c)

i2(c)
12((!)

12(c)

12(c)

12(c)

12(c)

12((,)
12(c)

12(c)

12(c)

13(a)

13(a)

,I 75 36.5

4 5!7 36.5 2 1.000 1 1.000 4 1.000 9 0.998 20 0.97,1 73 0.902

30 36.5 1 1.000 4 0.999 9 0.994 15 0.986 28 0.9,11 61 0.881

1 60 36.5 14 0.945 t 1 (}.9(}3 ,16 0.830 39 0.703 38 0.631 82 0.655

1 86 36.5 10 (}.913 1 0.816 51 0.803 70 0.68,1 87 0.565

8 76 36.5 3 1.000 7 1.000 15 [ .000 2i 1.00(} 40 0.920

S 60 36.5 ,1 0.999 9 0.998 18 0.986 27 0.96,1 38 0.871 86 0.767

3 1.000 (1 1.000 3 1.00(} 7 (}.999 18 0.980 73 0.89,1 13(a)

13(_)
13(a)

13(a)
13(a)

13(a)

13(a)

15



Table B1. Continued

cx, 0, c_1, a_, c_3, c_4, c_, c_6, Figure in

ilI_c deg (leg FS deg PR1 deg PR2 deg PR3 deg PR4 deg PR5 (teg PR6 text

0.6 18 30 36.5 5 0.993 14 0.983 33 0.944 41 0.889 61 0.781 84 0.733 13(a)

0.6 18 0 36.5 2 0.950 14 0.911 30 0.836 30 0.744 41 0.689 9 0.656 13(a)

0.6 18 30 36.5 25 0.871 6 0.831 16 0.809 31 0.654 15 0.622 41 0.600 13(a)

0.6 18 59 36.5 32 0.878 34 0.851 83 0.756 67 0.654 59 0.554 13(a)

0.6 18 85 36.5 22 0.850 26 0.805 55 0.757 66 0.725 73 0.620 13(a)

0.6 22 76 36.5 7 0.998 1,1 0.994 28 0.969 37 0.921 56 0.789 13(a)

0.6 22 61 36.5 10 0.990 19 0.982 38 0.943 41 0.887 58 0.763 13(a)

0.6 22 31 36.5 16 0.956 34 0.912 50 0.831 63 0.735 82 0.654 47 0.633 13(a)

0.6 22 30 36.5 42 0.772 28 0.780 37 0.725 40 (}.637 13(a)

0.6 22 60 36.5 43 0.819 49 (}.810 63 0.566 13(a)

0.6 22 86 36.5 23 0.777 27 0.806 64 0.684 66 0.721 65 0.645 13(a)

12 75 3 1.000 - 1 0.973 6 0.8(}3 -5 0.853 12 0.956 47 0.906 13(b)0.9 36.5

0.9 12 61 36.5

0.9 12 30 36.5

0.9 12 59 36.5

0.9 12 84 36.5

0.9 14 75 36.5

0.9 14 60 36.5

0.9 14 31 36.5

0.9 14 30 36.5

4 1.000 1 1.000 0 1.000 5 1.000 15 0.983 49 0.916 13(b)

3 1.000 1 1.000 4 1.000 8 0.997 23 0.959 47 0.903 /3(b /

7 0.973 5 0.955 3 0.747 8 0.700 32 0.558 58 0.633 13(b)

8 0.941 22 0.911 29 0.814 48 0.675 61 0.535 13(b)

2 0.999 2 0.999 6 0.998 15 0.992 32 0.913 86 0.747 13(b)

2 1.000 3 0.999 8 0.997 17 0.984 34 0.878 83 0.754 13(b)

2 0.998 5 0.997 13 0.983 27 0.945 38 0.760 -43 0.721 13(b)

8 0.970 -6 0.948 - 12 0.832 0 0.603 8 0.597 43 0.543 13(b)

0.9 14 60 36.5 14 0.948 1 0.930 33 0.796 36 0.590 43 0.533 13(b)

0.9 14 85 36.5 11 0.906 13 0.757 36 0.665 46 0.730 59 0.619 13(b)

0.9 18 76 36.5 5 1.000 12 0.997 -25 0.973 35 0.916 54 0.759 13(b)

0.9 18 61 36.5 6 0.996 14 0.988 33 0.946 42 0.842 65 0.691 13(b)

0.9 18 30 36.5 5 0.972 23 0.905 45 0.687 27 0.649 60 0.496 48 0.509 13(b)

0.9 18 30 36.5 29 0.881 12 0.879 32 0.612 36 0.511 38 0.478 55 0.457 :13(b)

0.9 18 84 36.5 13 0.843 6 0.573 18 0.539 38 0.518 52 0.586 54 0.939 13(b)

0.9 22 76 36.5 - 13 0.990 20 0.973 -37 0.908 47 0.817 65 0.640 60 0.601 13(b)

0.9 22 61 36.5 -18 0.966 28 0.900 -44 0.808 60 0.683 13(b)

0.9 22 31 36.5 8 0.812 14 0.649 13 0.591 25 0.659 66 0.394 25 0.550 13(b)
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Table B1. Continued

c_, 0, (_}, a_, (,_, (Q, ()), <Q, Figure m

M_c deg deg FS deg PR1 deg PR2 deg PR3 (leg PR4 (leg PR5 deg PR6 text

0.9 22 29 36.5 29 0.854 15 0.766 34 0.557 63 0.408 ,12 0.478 62 0.534 13(t))

0.9 22 60 36.5 30 0.870 23 0.807 38 0.752 41 0.739 52 0.908 13(b)

1.2 12 86 36.5 2 0.993 16 0.952 4 0.709 44 0.505 52 0.564 49 0.820 13(c)

1.2 14 60 36.5 10 (}.989 1 (}.996 14 0.75,1 32 (I.544 40 0.401 67 0.399 13(c)

1.2 14 86 36.5 5 0.974 16 0.901 4 0.620 45 0.351 50 0.563 72 0.,125 13(c)

1.2 18 75 36.5 3 1.000 9 1.00(} 20 0.981 29 1.000 40 0.82(} 60 0.732 13(c)

1.2 18 60 36.5 4 1.000 11 1.000 25 0.945 34 0.961 43 (}.693 49 0.711 13(c)

1.2 18 29 36.5 2 1.000 10 1.000 24 0.558 12 0.571 ,I4 ().373 28 0.702 13(c)

1.2 18 30 36.5 18 0.953 4 0.!169 4 0.461 13 0.352 22 0.399 15 0,288 13(c)

1.2 18 60 36.5 16 0.986 11 0.876 32 0.640 38 0.712 52 (I.51,1 13(c)

1.2 18 86 36.5 11 1.000 5 0.572 25 0.849 7(} 0.217 48 0.,130 I9 0,791 13(c)

1.2 22 75 36.5 10 0.998 19 0.993 32 0.883 36 (}.864 58 0.502 13(c)

1.2 22 60 36.5 16 0.974 25 0.955 42 (}.6-<1(} 42 0.822 61 0.44,'1 13(c)

1.2 22 31 36.5 1 0.760 9 0.190 7 0.324 21 0.347 51 ().298 30 0.326 13(c)

1.2 22 0 36.5 23 0.767 1() (1.511 7 0.440 4 0.290 7 0,248 9 0.294 13(c)

1.2 22 30 36.5 23 0.944 12 0.591 21 0.521 28 0.618 31 0.183 41 0.352 13(c)

1.2 22 59 36.5 19 0.863 11 0.881 21 0.546 39 0.573 47 0.542 56 [ 0.633 13(c)

1.2 22 85 36.5 13 0.897 25 0.6(}6 29 0.588 14 0.212 29 0.343 13(c)

0.6 12 87 40.5 47 0.819 56 0.710 85 0.688 39 0.878 28 0.919 14(a)

0.6 14 60 40.5 25 0.887 16 0.820 41 0.618 48 (}.65l 25 0.764 14 0.892 1-1(a)

0.6 18 75 40.5 -I 0.990 8 0.997 14 0.993 19 0.985 28 0.948 78 (),863 14(a)

0.6 18 61 40.5 5 0.997 9 0.998 17 0.991 22 0,981 29 0.940 77 0.888 14(a)

0.6 18 31 40.5 9 0.993 16 0.988 30 0.967 30 (}.94,1 44 0.888 47 0.859 1-1(a)

0.6 18 1 40.5 17 0.943 33 0.889 41 0.836 52 (}.82(/ 46 0.771 11 (I.797 ll(a)

0.6 18 59 ,10.5 38 0.868 47 0.713 43 I).634 88 0.703 14(a)

0.6 18 86 40.5 54 0.766 56 0,744 72 0.640 14(a)

0.6 22 75 40.5 6 (I.965 12 0.993 23 0.979 27 0.957 38 (},883 84 0.783 14(a)

0.6 22 61 40.5 11 0.991 17 0.987 29 0.967 30 0.943 36 0.868 86 0.804 l,l(a)

0.6 22 31 40.5 21 0.964 30 0.939 43 0,885 54 0.849 68 (},780 10 0.758 l|(a)

0.6 22 1 40.5 27 0.845 29 0.813 36 0.755 47 0.71(/ ,'18 0.655 5 0.689 1,1(a)
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Table B1. Concluded

r_, 0 _, ,_, c_a, a_, a_, _, Figure ill

AI_ deg deg FS (leg PR1 deg PR2 deg PR3 deg PR4 (leg PR5 deg PR6 text

0.6 22 29 40.5 26 0.771 20 0.715 33 (}.576 6 0.595 50 0.641 14(a)

0.6 22 60 40.5 55 0.761 74 0.634 52 0.588 14(a)

0.6 22 85 40.5 64 0.697 56 0.740 85 0.685 83 0.607 14(a)

0.9 14 75 ,10.5 1 0.999 2 0.999 5 0.999 10 0.998 17 0.978 -59 0.863 14(a)

0.9 14 61 40.5 0 1.000 4 1.000 8 1.000 12 0.997 19 0.972 43 0.933 1,1(a)

0.9 14 0 40.5 - 5 (}.986 15 0.975 36 (}.930 33 0.833 40 (}.773 14 (}.878 14(a)

0,9 8 86 40.5 8 (),733 8 0.900 24 0.609 41 0.725 12 {I.992 4 (I.938 14(a)

0.9 12 85 40,5 37 0,797 40 0.736 90 0.526 49 0.714 49 0.813 14(a)

0.9 14 60 40.5 1 0.767 9 0,855 28 0,613 67 0,458 46 0.548 55 0,720 14(a)

0.9 14 86 40.5 41 0,732 44 0.733 84 {).617 85 0.535 69 0.566 84 0.662 14(a)

().9 18 60 40.5 7 {}.999 13 0.996 25 0.978 26 0.953 33 0.875 79 0.813 14(t))

0.9 18 31 40.5 13 0.979 28 0.948 43 0.849 47 0.785 54 0.738 37 0.762 ll(b)

0.9 18 28 ,10.5 24 0.757 9 0.678 12 0.520 29 0.451 21 0.483 43 0.636 lt(b)

0.9 22 75 40.5 7 0.971 16 0.980 30 0.95,1 33 0.914 45 0.811 ll(b)

0.9 22 61 40.5 17 0.976 22 0.961 37 0.919 37 0.874 48 0.775 44 0.792 14(b)

0.9 22 31 40.5 31 0.850 39 0.788 ,14 0.610 68 0.576 65 0.590 39 0.624 1,1(b)

0.9 22 16 40.5 23 0.728 23 0.643 26 0.671 48 0.488 59 0.539 25 0.589 1,1(b)

0.9 22 31 40.5 24 0.730 1,1 0.557 32 0.360 22 0.419 48 0.528 1,1(b)

0.9 22 59 40.5 44 0.744 51 0.640 1,1(b)

0.9 22 85 .10.5 47 0.359 61 0.429 66 0.642 64 0.602 88 0.372 1,10) )

1.2 8 86 ,1{).5 19 0.945 1 0.876 19 0.561 44 0.535 22 0.917 9 0.872 14(c)

1.2 12 86 40.5 15 0A95 38 0.568 43 0.690 :]9 0.707 41 0.685 35 0.961 1,l(c)

1.2 14 60 40.5 5 0.924 5 0.947 23 0.634 45 0.405 37 0.738 35 0.985 ll(c)

1.2 14 86 40.5 23 0.156 38 0.540 56 0.437 43 0.666 54 0.465 44 1.000 1 l(c)

1.2 18 76 40.5 5 0.911 8 0.914 15 0.885 22 0.894 30 0.822 41 0.693 ll(c)

1.2 18 60 40.5 1 0.780 25 0.758 88 0.349 42 0.679 46 0.461 50 0.649 1l(c)

1.2 18 86 4(}.5 25 0.560 44 0.268 63 0.371 57 0A73 42 0.724 59 0.505 1.1(e)

1.2 22 75 40.5 8 0.903 15 0.898 27 0.822 29 0.867 36 0.726 45 0.839 ll(e)

1.2 22 61 40.5 16 0.905 23 0.898 32 0.762 36 0.870 40 0.640 39 0.768 1.l(c)

1.2 22 29 ,10.5 13 0.684 12 0.536 14 0.470 28 0.519 47 0.405 23 0.655 ll(c)
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TableB2.BaselineC(mfigurathmat_;¢= 5°

deg
12
12
14
14
12
12

1,1

1.1

12

14

12

14

1,1

1,1

12

14

14

12

14

14

8

12

12

1,1

11

12

114
12

[12
I 1,1

1,l

12

14

14

12

12

11

14

12

14

I ¢/

] (lc_
75

185
31

61

'60

85

31

85

85

86

85

30

61

85

61

30

85

84

60

85

0

60

85

3()

85

1

0

59

8,1

30

85

84

60

84

60

85

60

85

8,i

85

FS deg PR 1

32.8 5 0.980

32.8 ,1 0.979

;{2.8 13 (I.972

32.8 10 0.966

;12.8 8 0.979

32.8 5 0.978

32.8 15 0.967

32.8 9 ().961

35.0 2 0.969

35.0, 6 0.951

35.0 3 0.963

35.0 13 0.959

35.0 10 0.950

35.0 8 0.936

35.0 5 0.973

35. ) 12 0.995
35.0 6 0.959

36.5! 4 0.958
i

36.5 9 0.951

36.5 1 {).935
_6.5 13 0.829

36.5 3 0.966

36.5 3 0.945

36.5 10 0.!)56

36.5 2 0.9(}8

36.5 1(} 0.676

36.5 9 0.641

36.5 3 0.970

36.5 2 0.963

36.5 9 0.972

36.5 0 0.9,16

40.5 6 ().753

40.5 9 0.951

.1().5 32 0.709

40.5 14 (}.943

40.5 12 0.641

,1().5 11 0.896

40.5 32 0.673

40.5 16 (}.884

,10.5 12 0.77l

(_2,

(leg

3

3

4

1

1

4

7

3

6

3

1(}

2

4

14

6

1

8

13

3

17

.i.l

8

21

5

26

52

64

9

14

,1

14

21

8

38

25

29

25

37

3

27

PR2

0.970

(/.968

{).958

0.951

0.970

0.966

().951

0.911

0.963

().9,15

0.951

(}.938

0.931

0.918

0.993

0.986

(1.986

0.971

0.922

0.955

0,83(}

0.953

0.938

0.931

0,885

(I.722

0.656

1.(}00

1.000

0.911

0.981

0.895

0.977

0,861

0.9|1

0.7,17

0.795

0.750

O. 562

0.192

deg

6

8

t

0

3

12

17

1,I

12

28

16

17

15

12

3

5

8

37

,1

39

19

10

8

5

36

40

19

15

10

0

35

1,1

51

22

,14

2

63

26

67

PR3

0.939

0.933

0.920

0.912

0.94,1

0.928

0.910

0.887

0.885

0.869

0.915

0.890

0.878

0.899

0.884

O.733

0.760

0.917

0.8O5

(}.907

O.968

0.853

0.969

0.861

(}.904

0.878

0.795

0.768

0.754

O.685

0.700

0,751

0.786

0.75O

0,881

0.602

0.770

0.632

(}.394

0.433

21

6

9

31

69

13

79

7

73

37

83

52

76

(leg PR4 deg

3 0.909 11

2 0.920 21

1-1 0.868 12

9 0.885 28

4 0.923 1

19 0,936 21

23 0.876 26

2,1 0.90.1 32

35 0.787 43

52 O.778 60

30 0.7,16 38

11 [ 0.823 12

1 0.825 al

,I0 10.653 ,1,1

19 0.861 10

2 Io.729 1
19 0.'165 .41

,1,'I 0.734 52

31 10.719 33

53 0.767 65

2 0.988 ,l

0 0.672 9

36 0.706 51

2 0.741 10

45 0.(_4,1 53

3 1.000 7

3 1.000 20

0.571 4

0.3(18 40

0.791 1

0.3581 5,1

0.7091 38

0.659 I 29

O.678 , ,17

0.540 I 32

0.506 i 52

0A78 I 49

0.5201 88

(1.323 I 51

0.,116 I 83

(ITS,,

PR5 (teg

0.775 65

0.764 77

0.776 44

(/.819 88

0.768 .13

().768 19

0.650 51

0,628 53

0.655 77

0.657

0.543 68

0.5,17 16

0.630 59

0.705 60

0.405 ,18

(I.381 ,17

0.337

0.665 65

0.639 74

0.631

0.8,10 10

0.519 60

0.522

0.519 45

0.650

0.588

0.202

0.378 48

(I.277 67

(}.336 43

0.359

0.851 35

0.7,10 46

0.7.12 6-1

0.564 42

0.602 56

0A21 [ 80

0..131

0.,t38 I 36

0.320] 56

PR6

0.640

0.620

0.597

0.580

0AS1

0,489

0.547

0.687

0.708

0.52O

(}.459

0.566

0.617

0.303

0.2,13

0.793

0.6,17

0.783

0.545

0.168

0.401

(}.462

O.334

O.933

0.851

0.797

0.815

0.786

0.566

0.8,17

0.584

t!)(_)
19(a)

1900

19(a)

19(b)

19(I))

19(b)

190))

2o(a)
20(a)

2o0,)
20(b)

2(}(b)

20(b)

20(c)
')o((_)
2o(,-)
21(a)

21(_)
21(a)

21(}))

210))
2i(1))
21(b)

21(b)
21((')

21(c)

2a(,,)
2t((,)
21((!)

2t(_)
22(a)
22(a)

22(a)

22(17)
22(t))

220))

22(b)

22(c)

22(c)
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Table B3. Baseline Configuration at 3 = 5 °

o_, 0, I al' off, (_3, ct4 a5, o_6 Figure in

M,x, deg deg FS I deg PR1 deg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text

0.6 12 30 32.8 0 1.000 3 1.000 5 0.999 11 0.990 30 0.912 74 0.788 15(a)

0.6 12 60 32.8 14 0.985 7 0.974 13 0.940 24 0.910 39 0.708 86 0.622 15(a)

0.6 12 85 32.8 16 0.976 7 0.961 13 0.934 34 0.888 53 0.706 15(a)

0.6 14 75 32.8 1 1.000 -3 1.000 7 1.000 16 0.992 38 0.915 87 0.738 15(a)

0.6 14 61 32.8 1 1.000 -4 1.000 9 0.998 17 0.985 41 0.891 15(a)

0.6 14 31 32.8 13 0.985 6 0.970 12 0.920 16 0.876 15 0.796 41 0.610 15(a)

0.6 14 60 32.8 19 0.967 10 0.946 t 26 0.898 35 0.886 42 0.730 15(a)

0.6 14 85 32.8 20 0.957 10 0.934 t 22 0.899 42 0.835 64 0.694 15(a)
0.9 12 30 32.8 1 1.000 3 1.000 6 0.998 12 0.977 25 0.782 42 0.666 15(b)

0.9 12 85 32.8 18 0.973 10 0.956 12 0.930 30 0.835 52 0.628 15(b)

(}.9 14 75 32.8 1 0.997 4 0.996 11 0.993 23 0.966 48 0.808 15(b)

0.9 14 60 32.8 1 0.999 6 0.998 13 0.990 28 0.948 54 0.744 15(b)

0.9 14 -30 32.8 0 1.000 -5 0.997 12 0.977 22 0.874 29 0.732 48 0.552 15(b)

0.9 14 30 32.8 15 0.983 9 0.964 17 0.896 18 0.808 23 0.539 55 0.428 15(b)

0,9 14 61 32.8 21 0.965 13 0.947 33 0.908 35 0.851 51 0.558 15(b)

0.9 14 85 32.8 21 0.952 11 0.937 8 0.914 26 0.792 61 0.657 15(b)

1.2 8 85 32.8 9 1.000 5 0.998 3 0.975 2 0.908 12 0.455 42 0.545 15(e)

0.6 12 75 35.0 2 0.999 -1 1,000 3 1.000 6 0.999 13 0.990 40 0.946 16(a)

0.6 12 61 35.0 1 1.000 3 1.000 5 1.000 7 1.000 15 0.989 46 0.948 16(a)

0.6 12 31 35.0 2 1.000 4 1,000 -7 1.000 12 0.997 21 0.972 48 0.931 16(a)

0.6 12 60 35.0 14 0.973 4 0,950 19 0.913 28 0.819 32 0.705 62 0.733 16(a)

0.6 12 85 35.0 17 0.960 8 0,947 47 0.872 55 0.723 74 0.572 16(a)

0.6 14 75 35.0 1 0.997 3 0.997 6 0.996 11 0.994 23 0.965 76 0.875 16(a)

0.6 14 61 35.0 2 0.998 5 0.999 9 0.997 14 0.992 26 0.957 84 0.878 16(a)

0.6 14 29 35.0 3 1.000 7 0,999 13 0.992 23 0.974 33 0.902 64 0.849 16(a)

0.6 14 0 35.0 2 0.997 6 0.992 19 0.961 28 0.915 42 0.833 23 0.778 16(a)

0.6 14 60 35.0 20 0.945 10 0.905 46 0.891 39 0.785 48 0.579 87 0.643 16(a)

0.6 14 85 35.0 22 0.936 11 0.940 50 0.830 65 0.720 86 0.561 16(a)

0.9 12 75 35.0 2 0.997 2 0.997 4 0.997 8 0.996 19 0.969 67 0.873 16(b)

0.9 12 60 35.0 1 1.000 4 1,000 6 0.999 10 0.997 -21 0.963 72 0.873 16(b)

2O



TableB3.Concluded

Al-,,c (leg deg FS deg PR1 deg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text,

0.9 12 30 35.0 2 1.000 5 1.01)0 9 0.999 14 0.990 29 0.919 61 0.832 16(t))

0.9 12 85 35.0 19 0.953 7 0.947 41 0.806 51 0.692 61 0.579 16(I))

I).9 14 61 35.0 2 0.999 6 0.9!18 12 0.994 19 0.981 31 0.903 84 0.772 16(b)

0.9 14 31 35.0 3 1.000 8 0.998 17 0.983 30 0.949 40 0.797 44 0.740 16(t))

0.9 14 31 35.0 12 0.977 3 0.950 9 0.818 10 0.582 19 0.623 53 0.525 16(b)

1).9 14 60 35.0 21 0.948 8 0.935 24 0.894 38 0.655 52 0.506 16(t))

(I.9 14 85 35.0 27 /).919 1 0.91,1 47 0.70,1 52 0.740 70 0.58(I 16(t))

1.2 12 60 35.0 12 0.990 ,1 1,000 7 0.853 26 0.643 40 0.452 50 0.753 16(c)

1.2 12 85 35,0 15 0.977 1 0.979 26 0.584 49 0,512 55 0.570 62 0.531 16(c)

1.2 14 75 35.0 0 0.977 3 0.965 8 0.940 15 0.945 27 0.880 41 0.789 161c)

1.2 14 61) 35.0 17 0,982 8 1.0011 36 0,700 40 0.596 54 0.452 161c)

1.2 1:1 85 35.0 16 0,985 1 0,984 22 0,631 60 0,322 48 0,626 78 11,405 16(c)

0.6 12 60 36.5 13 0.961 7 0,911 19 0.886 42 0.673 27 0.720 48 0,842 171a)

0.6 12 85 36.5 17 0.939 31 0.882 68 0.766 89 0.630 58 0.673 63 0.822 17(a)

0.6 14 76 36.5 1 1.000 2 1.000 6 1.000 10 0.999 19 0.979 60 0.917 17(a)

0.6 14 60 36.5 2 1.000 5 1.000 8 1.000 13 0.997 21 0.974 59 0.928 17(a)

0.6 14 31 36.5 4 1.000 8 1.000 14 0,995 -19 0,986 28 0.945 49 0.909 t7(a)

0.6 14 0 36.5 2 0.998 10 0.994 25 0.967 30 0.929 46 0,857 26 0.8-'17 17(a)

0.6 14 60 36,5 25 0.919 24 0.881 44 0,838 58 0.672 38 0.634 68 0,731 171a)

0.6 14 85 36,5 20 0.904 34 0,879 67 0.773 86 0.646 68 0.630 171a)

0.9 8 85 36.5 8 0,984 5 0.994 32 0.772 49 0,614 32 0.860 16 0.990 17(b)

0.9 12 60 36.5 0 1.000 4 1.000 6 0.999 9 0.998 17 0.979 43 0.934 17(b)

0.9 12 30 36.5 2 1,000 6 1.000 10 0,999 -14 0.994 21 0,957 43 0.918 17([))

0.9 12 61) 36.5 15 0.962 5 0,891 21 0,780 38 0.615 43 0.539 57 0.690 17(1))

0.9 12 86 36.5 22 0.925 35 0.712 63 0.784 71 0.624 78 0.505 82 0.671 17(t))

1).9 14 60 36.5 2 1.000 6 1.000 11 0.997 17 0.990 26 0.941 73 0,860 17(b)

0.9 14 30 36.5 4 1,000 9 0.998 18 0.986 26 0.964 31 0.888 56 0.83,i 17(b)

0.9 14 0 36.5 1 0.995 10 0.982 32 0.883 30 0,740 42 0.675 13 0.736 17(I))

0.9 14 31 36.5 9 0.971 4 0.944 1 0.742 8 0.581 15 0.602 40 0.647 17(b)

0.9 14 60 36.5 21 0.938 9 0.895 36 0,808 42 0.620 53 0,465 171t))

0.9 14 71 36.5 21 0,916 10 0.801 51 0.808 67 0,613 62 0.502 lT(b)

1.2 8 85 36.5 6 0.983 5 0,985 26 0,715 46 0.461 36 0.709 21 0.955 17(c)

1.2 12 61 36.5 11 0,972 2 1.000 17 0.746 32 0,437 42 0.506 39 0.967 17(c)

1,2 12 85 36.5 11 1.000 0 0.612 39 0,496 38 0.725 58 0.486 51 0.705 17(c)

1.2 14 60 36.5 16 0.990 10 0.953 43 0.713 58 0.381 55 0.309 46 0.828 17(c)

1.2 14 86 36.5 11 0.983 2 0.530 30 0.364 48 0.528 42 0.703 59 0.60{) 17(c)

0.6 12 86 40.5 50 0.813 70 0.664 71 0.738 36 0.904 30 0.928 18(a)

0.6 14 60 40.5 26 0.893 27 0.712 36 0.709 42 0.691 20 0.826 39 0.914 18(a)

I).6 14 86 40.5 51 0.799 68 0.683 46 0.815 49 0.861 18(a)

0,9 8 85 40.5 16 0.810 24 0.669 45 0,627 31 0.911 11 0.994 9 0.886 18(b)

0.9 14 75 40.5 1 0.998 3 0.998 7 0.997 10 0.996 15 0,982 56 0,820 18(b)

1.2 12 84 40,5 42 0.669 37 0,746 70 0.547 38 0,787 40 0,709 181c)

1.2 14 60 40.5 2 0.932 8 0.862 33 0.450 43 0.499 28 0.968 34 0,883 18(c)

1.2 14 85 40.5 45 0,539 41 0.624 65 0.600 74 0,473 41 0.731 42 0.751 181c)
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TableB4.ConfigurationWithVortexFlapDeflected

(i, 8, (_},

M_ deg deg FS deg PR1

{).9 15 75 32.8 2 0.917

0.9 15 60 32.8 11 0.997

0.9 15 60 32.8 12 0.974

0.9 15 86 32.8 11 0.961

0.9 18 75 32.8 1 0.998

0.9 18 61 32.8 7 0.995

0.9 18 59 32.8 19 (}.953

0.9 18 71 32.8 19 0.947

0.9 18 81 32.8 19 0.942

0.9 22 75 32.8 21 0.859

0.9 22 61 32.8 11 0.941

0.9 22 30 32.8 33 0.909

0.9 15 75 35.0 2 0.950

0.9 15 60 35.0 9 0.997

0.9 15 30 35.0 7 1.000

0.9 15 60 35.0 11 0.964

0.9 15 85 35.0 11 0.951

0.9 18 75 35.0 2 0.999

0.9 18 60 35.0 3 0.997

0.9 18 60 35.0 20 0.932

0.9 18 85 35.0 20 0.924

0.9 22 75 35.0 14 0.933

0.9 22 30 35.0 33 0.888

0.9 22 59 35.0 31 0.871

0.9 22 85 35.0 30 0.853

0.9 15 30 36.5 6 1.000

0.9 15 60 36.5 11 0.957

0.9 15 85 36.5 7 0.958

0.9 18 76 36.5 1 1.000

0.9 18 60 36.5 2 0.998

0.9 18 31 36.5 7 0.995

0.9 18 30 36.5 17 0.951

0.9 18 85 36.5 18 0.942

0.9 22 75 36.5 12 0.960

0.9 22 29 36.5 7 0.946

0.9 22 30 36.5 30 0.887

0,9 22 59 36.5 33 0,833

0.9 22 85 36.5 26 0,889

0.9 12 75 40.5 3 1.000

a_, a_, at, a 5, .6 Figure in

deg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text

20 0.689 13 0.791 3 0.994 18 0.971 88 0.705 23(a)

13 0.984 8 0.996 0 1.000 18 0.963 82 0.652 23(a)

3 0.964 1 0.935 5 0.900 5 0.650 41 0.,137 23(a)

1 0.947 9 0.910 14 0.899 6 0.637 57 0.426 23(a)

19 0.952 49 0.727 49 0.666 54 0.638 23(a)

5 0.960 5 0.737 6 0.710 33 0.674 82 0.665 23(a)

7 0.937 9 0.897 6 0.872 15 0.635 43 0.711 23(a)

6 0.928 3 0.882 2 0.863 18 0.659 41 0.727 23(a)

4 0.921 1 0.867 10 0.858 22 0.695 41 0.721 23(a)

36 0.711 57 0.623 ,15 0.7,13 58 0.576 ,t4 0.682 23(a)

3 0.899 9 0.750 34 0.663 61 0.576 76 0.652 23(a)

23 0.900 51 0.780 28 0.640 19 0.723 27 0.765 23(a)

25 0.732 14 0.836 2 0.960 12 0.981 53 0.889 23(b)

13 0.95(} 7 0.935 3 1.000 13 0.986 62 0.893 23(b)

5 1.000 .1 1.000 2 0.998 20 0.957 55 0.845 23(b)

3 0.948 16 0.901 13 0.79(} 2 0.512 64 0.507 23(b)

4 0.928 43 0.592 13 0.683 43 0.463 72 0.557 23(t))

14 0.986 46 0.846 57 0.7(}8 23(b)

3 0.971 6 0.792 21 0.708 57 0.584 23(b)

3 0.9(}9 4 0.854 17 0.626 29 0.729 66 0.524 23(b)

2 0,894 40 0.460 32 0.727 36 0.717 65 0.562 23(b)

29 0.845 57 0.662 83 0.551 23(t))

18 0.967 37 0.665 22 0.721 25 0.644 41 0.577 23(t))

8 0.875 18 0.794 24 0.818 32 0.760 48 0.714 23(t))

0 0.788 ,I3 0.503 30 0.734 38 0.743 57 0.557 23(t))

3 1.000 0 1.000 4 0.999 17 0.976 42 0.927 23(e)

6 0.928 44 0.634 8 0.615 15 0.494 53 0.653 23((:)

1 0.960 67 0.668 41 0.514 54 0.495 61 0.706 73(c)

12 0.994 38 0.907 51 0.775 88 0.642 "3(c)

5 0.986 11 0.888 25 0.753 67 0.581 :23(c)

0 0.987 5 0.957 10 0.778 33 0.660 42 0.541 23(c)

1 0.926 4 0.860 14 0.627 14 0.663 45 0.486 23(e)

10 0.875 77 0.535 ,12 0.705 ,17 0.618 23(e)

24 0.906 - 48 0.773 84 0.601 23(c)

11 0.850 13 0.483 18 0.480 40 0.474 27 0.458 23(c)

16 0.956 35 0.697 23 0.701 29 0.540 83 0.445 23(c)

5 0.526 31 0.693 29 0.780 44 0.559 23(c)

17 0.791 41 0.712 36 0.734 56 0.542 23(c)

1 0.996 6 0.979 18 0.957 27 0.884 50 0.728 23(d)
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TableB4.Concluded

_, 0, _}, _, _, c_, t_, c_6, Figure in

M_c deg deg FS deg PIll deg PR2 deg PR3 deg PR4 deg PR5 (leg PR6 text

0.9 15 30 40.5 3 0.975 14 0.907 45 0.666 35 0,588 28 0.900 3 0.965 23(d)

0.9 15 87 40.5 16 0.973 4 0.968 70 0.731 57 0.644 43 0.749 39 0.881 23(d)

0.9 18 75 40.5 1 0.999 8 0.995 19 0.968 33 {).899 52 0.762 23(d)

0.9 18 60 ,10.5 1 (I.999 7 0.990 14 0.958 21 (}.919 42 0.744 23(d)

0.9 18 0 4(},5 ,1 0.946 25 0,785 49 0.652 24 0.670 22 (I.582 5 (I.516 23(d)

0,9 18 30 40.5 31 0.686 13 0.654 19 0.627 10 (}.599 15 0.596 48 0.505 23(d)

0.9 18 60 40.5 20 0.947 25 0.777 80 0.631 ,13 0.598 4(} 0.563 23(d)

0.9 18 86 40.5 2 0.969 1 0.963 37 0.663 71 0.588 59 0.575 23(d)

0.9 22 75 40.5 10 0.972 18 0.958 33 0.906 39 0.845 60 0.698 23(d)

0.9 22 61 40.5 11 0.983 20 0.958 34 0.910 36 0.857 51 0.725 23(d)

0.9 22 30 40.5 21 0.887 39 0,732 ,1,1 0.570 56 0.552 65 0.581 50 0.,194 23(d)

0.9 22 30 40.5 46 0.65(} 25 0.618 31 0.613 39 0.498 28 0.557 70 0.,139 23(d)

0.9 22 60 4(}.5 26 0.899 32 (}.63,1 8.1 0.519 6,1 0.61(I ,1,I 0.626 23(d)

0.9 22 86 40.5 21 0.740 4 (I.872 6 0.387 56 0.462 65 0.511 23(d)
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TableB5.ConfigurationWithWingFences

,_, O, (_1L, (t'_ , O_3L, C_4L, (_5 a GL, Figure in

M_c (leg deg FS deg PR1 deg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text

0.9 18 75 32.8 6 0.917 19 0.778 20 0.790 -34 0.864 58 0.683 25(a)

0.9 18 60 32.8 6 0.998 0 1.000 16 0.989 44 0.841 73 0.606 25(a)

0.9 18 29 32.8 6 0.992 2 0.987 8 0.884 5 0.542 33 0.417 49 0.406 25(a)

0.9 18 60 32.8 27 0.914 13 0.894 22 0.790 27 0.675 48 0.390 25(a)

0.9 18 75 35.0 5 0.937 19 0.843 17 0.747 30 0.771 47 0.690 25(b)

0.9 18 61 35.0 3 1.000 1 0.992 15 0.983 30 0.940 46 0.768 25(b)

0.9 18 30 35.0 2 (I.991 7 0.981 25 0.900 38 0.570 61 0.493 48 0.560 25(b)

0.9 18 60 35.0 31 0.874 7 0.849 38 0.672 56 0.465 25(t))

0.9 18 86 35.0 26 0.884 6 0.905 34 0.788 66 0.567 25(b)

0.9 18 75 36.5 6 0.928 22 0.879 31 0.829 27 0.741 40 0.678 25(c)

0.9 18 60 36.5 0 0.998 4 0.988 13 0.921 24 0.908 38 0.782 -86 0.619 25(c)

0.9 18 31 36.5 1 0.991 11 0.983 24 0.915 40 0.785 56 0.711 43 0.650 25(c)

0.9 18 31 36.5 21 0.885 10 0.858 7 0.538 14 0.477 32 0.330 50 0.485 25(c)

0.9 18 60 36.5 32 0.871 26 0.769 86 0.478 63 0.371 25(c)

{).9 18 86 36.5 16 {}.851 25 0.570 74 0.435 81 0.501 63 0.559 25(c)

0.9 18 75 i0.5 5 0.944 10 {).967 25 0.915 33 0.811 43 0.742 25(d)

0.9 18 38 40.5 11 0.791 3 0.530 18 0.442 51 0.393 29 0.559 49 0.537 25(d)

0.9 18 60 40.5 31 (}.777 38 0.712 88 0.426 46 0.510 25(d)

0.9 18 85 40.5 65 0.456 58 0.536 78 0.585 25(d)

TaMe B6. Configuration With Large Wing Fences and Vortex Flap Deflected

., 0, 4, 4, at, 4, Fig, i.
M x, deg deg FS deg PR1 deg PR2 deg PR3 deg PR4 deg PR5 deg PR6 text

{).9 14 85 40.5 43 0.712 26 d)
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Table B7. Configuration With Apex Flaps Deflected

M_ (leg deg FS

0.9 18 85 36,5

0.9 22 84 36.5

0.9 18 30 32.8

0.9 18 60 32.8

0.9 18 85 32.8

0.9 22 30 32.8

0.9 22 60 32.8

0.9 22 85 32.8

0.9 18 75 35.0

0.9 18 0 35.0

0.9 18 60 35.0

0.9 18 85 35.0

0.9 22 30 35.0

0.9 22 61 35.0

0.9 22 86 35.0

0.9 18 60 36.5

0.9 18 85 36.5

0.9 22 61 36.5

0.9 22 86 36.5

0.9 22 55 40.5

0.9 18 60 40.5

0.9 18 86 ,10.5

(leg PRI deg PR2 deg

21 1,000 21 0.98(I 20

12 0.995 11 (I.984 9

12 0.753 1;3 0.853 11

PR3 deg PR1

,i5 0.204

73 0.22t

2 0.985

2 1.000

2 1.000

3 (I.967

2 1.00(I

2 1.000

0,833 27 0,635

0.905 13 0.935

2 1,000

3 1.000

2 1.000

3 1.000

68 0.222

2 1.000

64 0.252

63 0.291

63 0.292

0.900 16 0.901

18 0.365

13 0.562

deg PR5 (leg

60 0.283

9 0.919

28 0.784

57

,13

4O

PR6

0.223

0.259

0.773

Figure in

text,

27(c)

27(c)

28(.)
28(_)
28(_)
2s(a)
28(a)

28(_)
2s(b)
2s(b)
2s0))
28(1))

2s(b)
28(t))

28(b)
2s(_)
28(_)
28((_)
28(c)

28((t)

28(d)

28((t)
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Table I. Configuration Matrixes Tested

Configuration tested at a, deg, of

Configuration a Mach -4 0 4 8 12 14 18

B 0.6 4 ,/ v' ,/ 4 ,/ ,/
.9 v / x/' v / v/ v / v / v/

1.2 4 ,/ ,/ 4 4 ,/ v/
B+5 0.6 v / v / v / v / v / x/

.9 v / v / v / v / v / v /
1.2 v / v/ v / v /

B 5 0.6 ,/ 4 v_ 4 ,/ 4
.9 v / v / v/ v / v / v/

1.2 4 4 4 ,/ 4 v/
VF 0.9 v / V/ v/ v / v / (c) v /

LWF 0.9 v/

SWF 0.9 v /

LWF+VF 0.9 v / v / v /

LAF 0.9 v/ v / v / v/ v/ v / v /

SAF 0.9 v /

22

,/
4
,/

,/

4

4
,/

26

,/
,/
4

4
,/
,/

v/
v_

3O

4
,/

(b)

,/

,/

4
,/

aThe configuration designations are defined as follows:

B: Baseline at l_ = 0°
B+5: Baseline at /_ = 5°

B 5: Baseline at 13 = -5 °

VF: Vortex flap

LWF: Large wing fence
SWF: Small wing fence

LAF: Large apex flap

SAF: Small apex flap
bAt fuselage station 40.5, no (tara at c_ = 30 °.
c(_ = 15 o.
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPN

Figure 1. Top view of model installed in 16-Foot Transonic Tunnel.

L-92-10

d

FS 0.0

I
R.

_ 1_ 5 _'Ocenterlinesurvey mechanism

60.1 _1

-I

38.0

Figure 2. Top-view sketch of the model showing flow-field survey stations. Linear dimensions are in i_lches.
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BL 10.871

FS _.313

Flap deflection
angle, deg o_,deg

30 -4 to 14

45 18 to 30

(a) Vortex flap.

Figure 3. Sketches of vortex control devices. Linear dimensions are in inches.
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m BL 3.050

4.715

Small wing fence

v

FS 28.120

--," 6.214
h..._

V

I-"
3.430 v

Large wing fence

(b) Wing fences.

Figure 3. Continued.
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L,d

12.779

Centerline of
rotation

Flap deflection i ~ _,,,,_

angle, deg _' _'=Y I

20 -4 tO 14

30 18 to 30

4.685

FS 32.232

(c) Large apex flap.

Figure 3. Continued.

BL 3.100

31



BL 3.100

Centerline of
rotation

4.743

8.250 °

.t

4.685

Flap deflection
angle, deg a, deg

Not tested -4 to 14

30 18 to 30

(d) Small apex flap.

Figure 3. Concluded.

I

FS 32.232
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGI_AP_

(a) Vortex flap.

(b) Large apex flap,

Figure 4. Model with vortex control devices installed.

L-92-11
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ORIGINAL PAGE

B,I..ACK AND WHITE PHOTOGRAPH

(c) Small apex flap.

(d) Large wing fence.

Figure 4. Concluded.
L-92-12
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..... _ '--''_-°_'_°°- r

Rake head and
cone probes

Rake arm

//_- Mounting

hardware
/

__!
.J

(b) Sketch of simulation hardware.

Figure 5. Concluded.
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21 ft

2

5111
\i i

coils

i _1 contraction
t::>'_-_/" J, Test section ,

Honeycomb
flow straightener

50 ft _"
16-blade low-speed

;ooling Low-speed/low- 56-kW
turbulence circuit drive

• 3- by 3-ft test section
• 1 to 250 ft/sec
• Re=lxl06
• Turbulence less than 0.1%
• Polyethylene glycol mist

"smoke seeding"

(a) Wind tunnel.

40-W
laser

Scanning
mirror

._l _ mirror

r_/ Bay k't_rbaa_:k P Laser sheet

ilenses __..___A

schli?rr?n 1.3 Test slection r

• 2- by 200-mm laser sheet
• 40-W laser

• 6000-pulse/sec rate
• Electro-optical system

Spin physics high-speed video
McDonnell Douglas image processing digitizer

(b) Imaging system.

Figure 6. Sketch of tile McDonnell Douglas Research Laboratories Shear Flow Facility.
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Cone-probe simulator

34

32

30

Angle
of attack 28
with no
burst at
survey 26
station,

deg
24

22

2O

18

Cone probes Cone probes
No cone probes forward aft

Figure 7. Effect of survey mechanism and cone-probe simulation oil the angle of attack of vortex burst.
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Clean wing

Vortex cross section

(FS 15.3)

J

With simulated cone probes

Vortex trajectory

- V° rt ex t;apjeC_)°rYL_ _ I

Vortex cross section

'_Vortex (FS 15.3)

cross sections

identical at probe LE ""_%_,

Figure 8. Effect of survey mechanism and cone-probe simulation on vortex trajectory and (:ross section. Angle
of attack, 18°; angle of sideslip, 0 ° Re per foot, 600000.
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Orifice for cone tip pressu F Orifice for cone side pressure

20 ° .250

T
forcone

Orifice for cone tip pressure

(a) Sketch of cone probe.

_ <-

2.00

J
J

3.90

(b) Sketch of cone probes in rake.

Figure 9. Sketch of cone probe and survey mechanism. Dimensions are in inches.
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i

7

FS 40.5 CL

(c) Sketch of rake and survey mechanism mounted on model.

Figure 9. Concluded.
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(a) FS 32.8.
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(b) FS 35.0.

Figure 10. Sketches showing tile flow-field survey points and probe numbering scheme.
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Figure 10. Concluded.
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primary vortex exerted the greatest influence in terms of total pressure loss on the over-the-wing flow field in
the area surveyed. A number of vortex control devices were also investigated. They included two differt_nt

apex flaps, wing leading-edge vortex flaps, and small and large wing fences. The w_rtex flap and both apex

flaps were beneficial in controlling the wing leading-edge primary vortex.
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